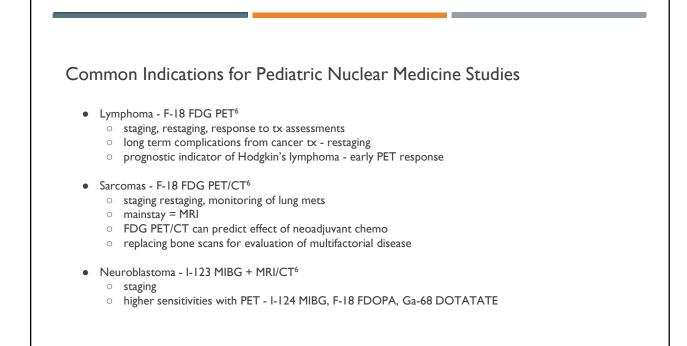
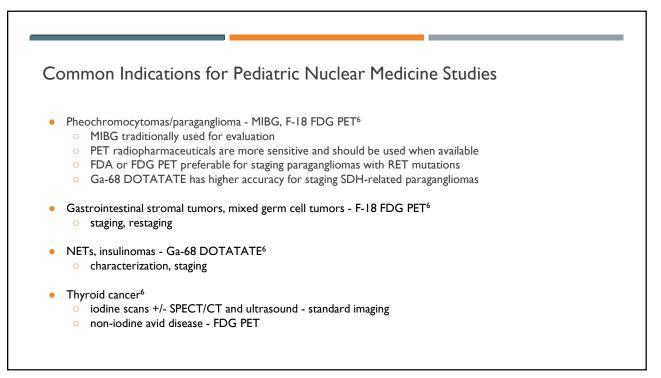


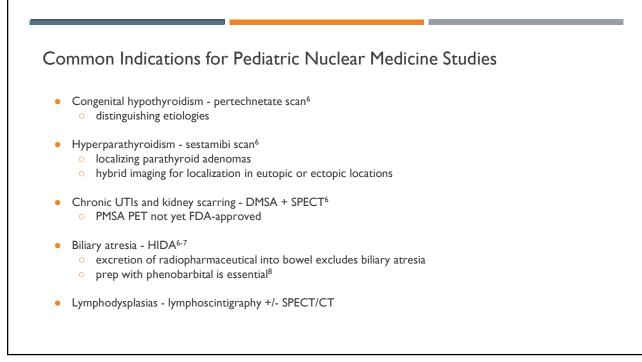

0	
Que	estions
What	t is the estimated radiation dose from an Tc99m bone scan for a 5 year old patient?
neuro	s a 3 yoF weighing 14 kg who is scheduled to receive a staging scan for recently diagnosed oblastoma. What is the appropriate dose of I-123 MIBG based on EANM and NACG lines? Which guideline offers a lower dose?
What	t are two results/pieces of information obtained from the Swedish study?
What	t are two advantages of PET MRI vs PET CT?

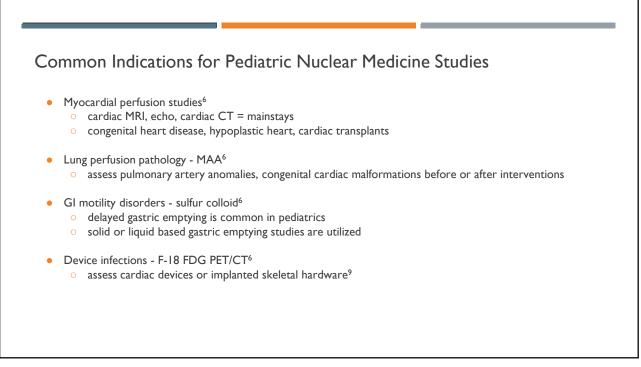
Importance

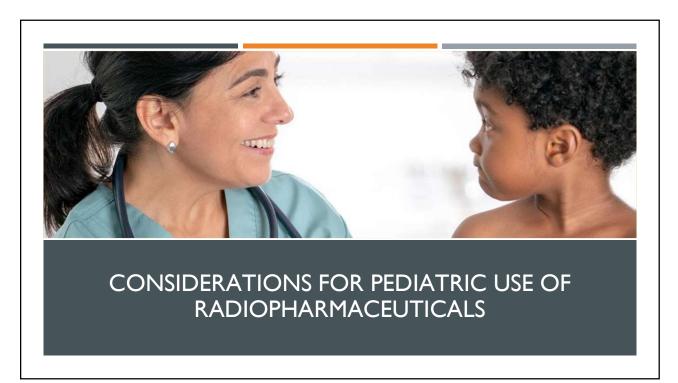

- Pediatrics are not little adults!¹
- Annual collective population radiation dose has increased over 750%¹
- CT is where most radiation exposure comes from for pediatrics
- Amount of activity administered to pediatric patients can vary up to 20 fold between institutions²
- Pharmacists are pivotal for educated and ensuring safe use

"The risk of cancer proceeds in a linear fashion at lower doses without a threshold and that the smallest dose has the potential to cause a small increased risk to humans."


-Biological Effects of Ionizing Radiation (BIER) Committee of the National Academy of Sciences National Research Council⁵

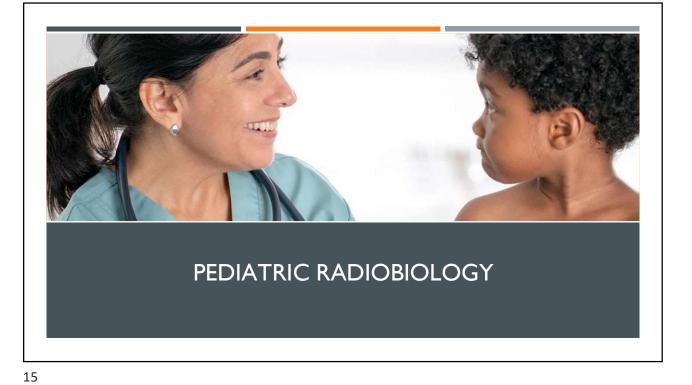






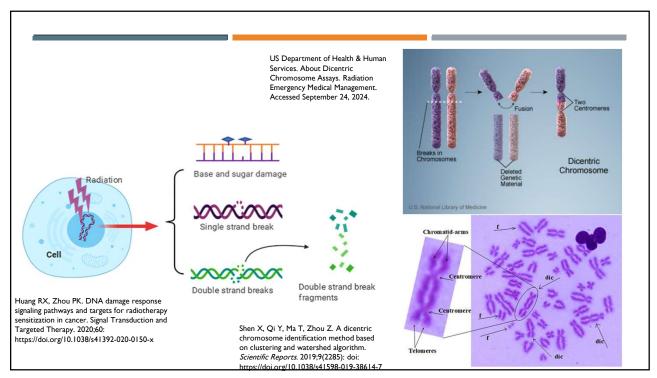
ated Medical Radiation Doses for a 5 Year Old Child ¹⁰							
Study Radiation Dose (mSv) Equivalent CXR							
Anteroposterior and lateral abdominal CT	0.05	2.5					
Tc99m cystogram	0.18	9					
Chest CT	3	150					
Head CT	4	200					
Abdominal CT	5	250					
Tc99m bone scan	6.2	310					
FDG PET scan	15.3	765					

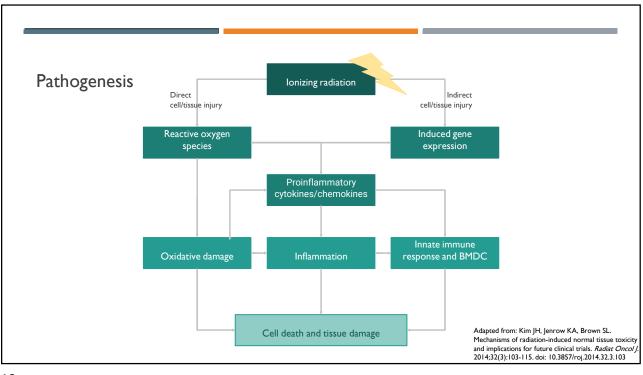
General Considerations

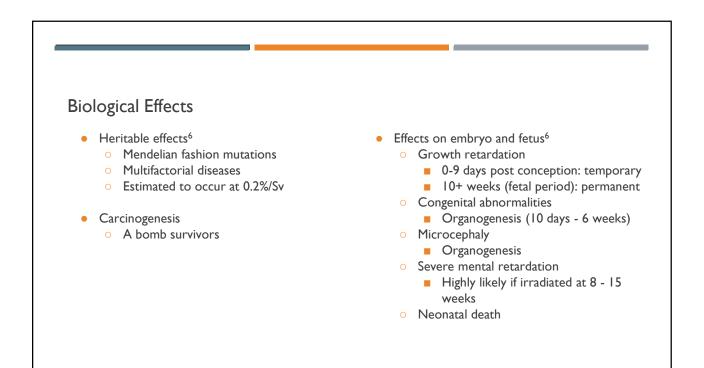

- Immobilization
- Sedation^{11,12}
 - PO chloral hydrate 50-70 mg/kg
 - Midazolam alone
 - PO 0.5-0.75 mg/kg
 - Intranasal 0.2 mg/kg
 IV pentobarbital 2-6 mg/kg +/midazolam
- "Feed and Swaddle" protocol¹³

- Preparation⁶
 - Fasting differences
 - Tour of scanning area beforehand
 - Distraction devices
- Scanning time⁶
- Dose vs scan time

13

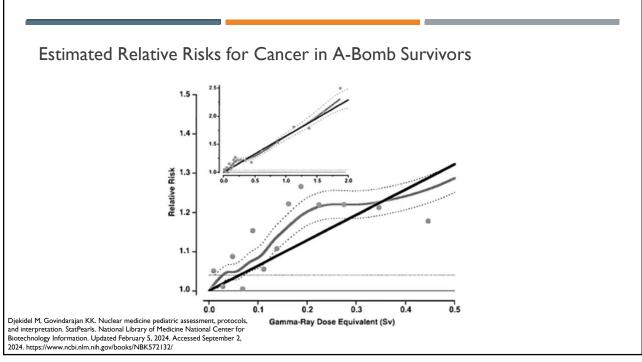

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>



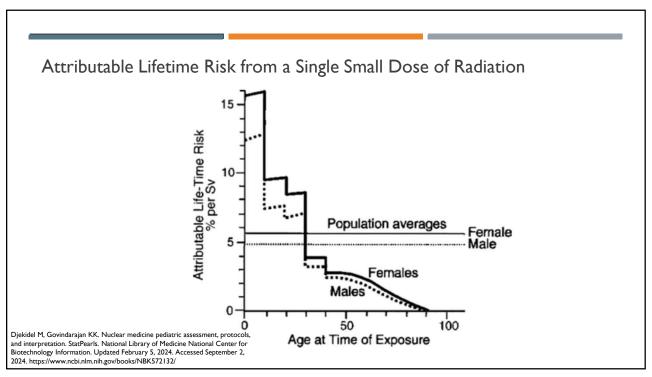

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

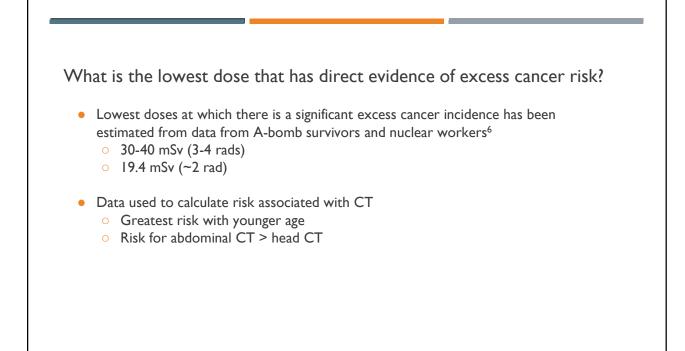
Pathogenesis

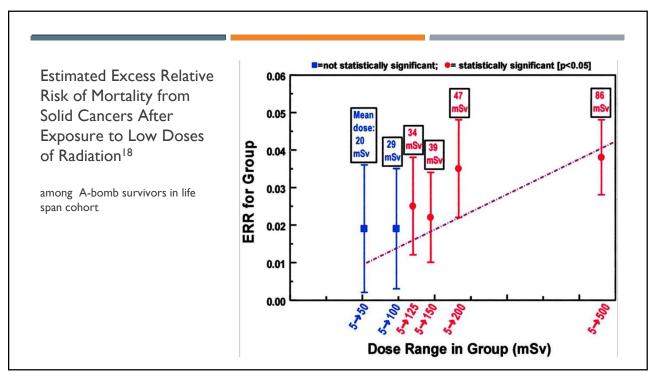
- Damage to DNA via base and sugar damage, single strand breaks, and double strand breaks¹⁷
 - Most biological effects of radiation are caused by double strand breaks
- Broken ends stick to other broken fragments to create dicentric chromosomes
 - Dicentric chromosomes undergo cell death during cell division
- Depletion of tissue stem cells, progenitor cells, vascular endothelial microvessels¹⁷
- Ongoing damage after radiation exposure
- Deterministic effects vs stochastic effects¹
 - Deterministic = threshold exists
 - Stochastic = no threshold



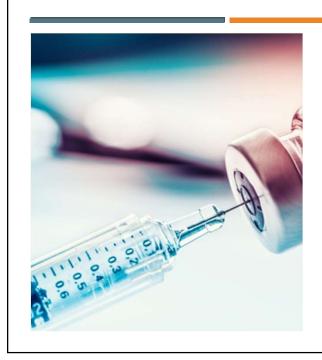
A-Bomb Survivors in the Life Span Study Cohort^{6,18}


- 86,572 people in cohort
- Mean dose 200 mSv
- 440 radiation attributable deaths from solid cancer
- 250 radiation attributable deaths from non-cancer
- Includes all ages


21


Carcinogenesis^{6,18-19} Credible evidence that significant excess cancer risk starts at doses ~20 mSv Linear relationship between relative risk of cancer and radiation dose Lifetime attributable risk of radiation-induced cancer varies with age of exposure Children are significantly more radiosensitive than adults

Study Radiation Dose (mSv) Equivalent CXR						
Anteroposterior and latera abdominal CT	^{.l} 0.05	2.5				
Tc99m cystogram	0.18	9				
Chest CT	3	150				
Head CT	4	200				
Abdominal CT	5	250				
Tc99m bone scan	6.2	310				
FDG PET scan	15.3	765				


Effect of low doses of ionizing radiation in infancy on cognitive function in adulthood: Swedish population based cohort study¹⁶

- > 2000 infant males <18 mo received radiation treatment for cutaneous hemangioma
- Evaluated effect on cognitive exams and high school attendance
- Average absorbed dose to brain = 52 mGy
 - Frontal lobe dose was 100+ mGy in 23.5% of infants
 - Posterior lobe dose was 100+ mGy in 12.6% of infants
- Statistically significantly decreased high school attendance by all infants who received >100 mGy
- Significant dose-response relation for all cognitive tests except spatial recognition

Swedish study¹⁶

		Category of m	ilitary test	
Dose to frontal part of brain (mGy)	No	Concept discrimination and general instruction	Technical instruction	Spatial recognition
0	638	5.50 (0.07)	5.45 (0.08)	5.36 (0.09)
1-20	400	5.67 (0.09)	5.40 (0.10)	5.37 (0.11)
>20-100	677	5.63 (0.07)	5.37 (0.08)	5.49 (0.08)
>100-250	410	5.42 (0.09)	5.31 (0.10)	5.48 (0.10)
>250	86	5.34 (0.18)	4.78 (0.21)	5.44 (0.21)
P for trend*		0.03	0.003	0.50

Dosing Recommendations

- European Association of Nuclear Medicine
- North American Consensus Guidelines

31

EANM vs North American Consensus Guidelines²⁰ Grant FD, GElfand MG, Drubach LA, et al compared 12 nuclear medicine studies' radiation exposure with dosages from each guideline Effective dose and critical organ dose EANM was developed to so that patients in all age groups receive similar estimated effective doses North American Consensus Guidelines are strictly weight based for most studies Use different referenced adult administered activities Images from children dosed with either guideline result in similar quality images

Nuclear Medicine S	udies Compared
18F-FDG PET torso	dynamic renography - 99mTc-MAG3
18F-FDG PET brain	renal cortical scan - 99mTc-DMSA
skeletal scintigraphy - 99mTc-methylene diphosphonate	radionuclide cystography - 99mTc- sodium pertechnetate
skeletal scintigraphy - 18F-sodium fluoride PET	Meckel scan - 99mTc-sodium pertechnetate
lung perfusion - 99mTc-MAA	gastric emptying/reflux (solid) - 99mTc-labeled sulfur colloid
hepatobiliary scintigraphy - 99mTc- disofenin	whole body 1231-MIBG scan

- Age groups: I year olds, 5 year olds, 10 year olds, 15 year olds, and adults
- Used age specific nominal whole body weight reported by Cristy and Eckerman
- No adjustment based on gender
- Used conversion factors from International Commission for Radiological Protection to obtain effective dose (mSv/MBq) from administered activity
- Tissue-weighting factors in ICRP Publication 60 were used for effective dose calculations²¹
- Critical organ doses based on biokinetic models for all ages
- Differences of 20% or greater between each guideline's effective dose were identified

EANM vs North American Consensus Guidelines Continued

Age:	1 year	5 years	10 years	15 years	Adult
Nominal weight (kg):	9.8	19	32	55	70
Fluorodeoxyglucose (FDG) PET torso					
¹⁸ F-FDG	ICRP 106				
EANM administered activity (MBq)	70	120	189	302	370
EANM effective dose (mSv)	6.7 [†]	6.7 [†]	7.0	7.2	7.0
NA administered activity (5.2 MBq/kg)	51	99	166	286	364
NA effective dose (mSv)	4.8	5.5	6.2	6.9	6.9
NA critical organ dose (mGy) – Bladder	24	34	42	46	47
Fluorodeoxyglucose (FDG) PET brain					
¹⁸ F-FDG	ICRP106				
EANM administered activity (MBq)	70*	70 *	102	163	200
EANM effective dose (mSv)	6.7 [†]	3.9	3.8	3.9	3.8
NA administered activity (3.7 MBq/kg)	37*	70	118	204	259
NA effective dose (mSv)	3.5	3.9	4.4	4.9 [†]	4.9 [†]
NA critical organ dose (mGy) – Bladder	17	24	30	33	34

35

Age:	1 year	5 years	10 years	15 years	Adult
Nominal weight (kg):	9.8	19	32	55	70
Bone scan					
^{99m} Tc-methylene diphosphonate (MDP)	ICRP 80				
EANM administered activity (MBq)	80	162	255	408	500
EANM effective dose (mSv)	2.2	2.3	2.8	2.9	2.8
NA administered activity (10.6 MBq/kg)	91	177	298	512	651
NA effective dose (mSv)	2.5	2.5	3.3	3.6 [†]	3.7
NA critical organ dose (mGy) – Bone	48	39	39	42	41
Bone scan					
¹⁸ F-sodium fluoride	ICRP 53				
EANM administered activity (MBq)	70*	70*	102	163	200
EANM effective dose (mSv)	11.9 [†]	6.0 [†]	5.3 [†]	5.5 [†]	5.4 [†]
NA administered activity (2.22 MBq/kg)	22	42	71	122	155
NA effective dose equivalent (mSv)	3.7	3.6	3.7	4.2	4.2
NA critical organ dose (mGy) – Bladder	24	26	28	33	39

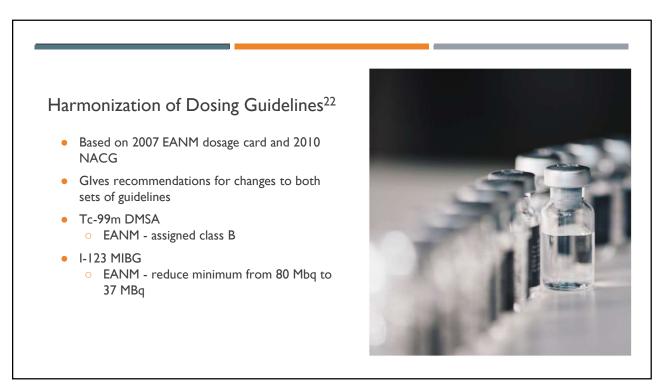
	EANM vs North	American	Consensus	Guidelines	Continued
--	---------------	----------	-----------	------------	-----------

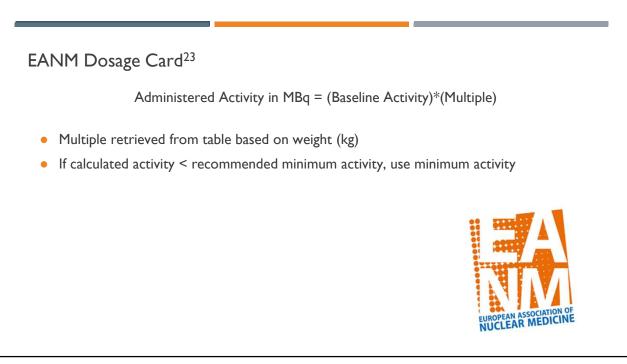
Age:	1 year	5 years	10 years	15 years	Adult
Nominal weight (kg):	9.8	19	32	55	70
Lung perfusion scan					
^{99m} Tc-MAA (macroaggregated albumin)	ICRP 80				
EANM administered activity (MBq)	15	26	41	65	90
EANM effective dose (mSv)	0.95	0.88	0.94	1.04	0.88
NA administered activity (1.1 MBq/kg)	15*	22	37	63	78
NA effective dose (mSv)	0.93	0.72	0.82	0.98	0.85
NA critical organ dose (mGy) – Lung	5.8	4.2	4.6	5.9	5.1
Hepatobiliary scan					
^{99m} Tc-disofenin	ICRP 80				
EANM administered activity (MBq)	28	49	77	122	150
EANM effective dose (mSv)	2.8 [†]	2.2 [†]	2.2 [†]	2.6 [†]	2.5
NA administered activity (1.85 MBq/kg)	18*	35	59	102	130
NA effective dose (mSv)	1.8	1.6	1.7	2.1	2.2
NA critical organ dose (mGy) –Gallbladder	17.6	9.8	9.5	12.2	14.2

37

Age:	1 year	5 years	10 years	15 years	Adult
Nominal weight (kg):	9.8	19	32	55	70
Dynamic renography					
^{99m} Tc-mercaptoacetyltriglycine (MAG3)	ICRP 80				
EANM administered activity (MBq)	23	33	45	61	70
EANM effective dose (mSv)	0.51	0.40	0.54	0.55	0.50
NA administered activity (3.7 MBq/kg)	37*	70	118	204	259
NA effective dose (mSv)	0.81 [†]	0.84 [†]	1.42 [†]	1.83 [†]	1.81 [†]
NA critical organ dose (mGy) – Bladder	1.2	1.3	2.0	2.8	2.8
Renal cortical scan					
^{99m} Tc-dimercaptosuccinic acid (DMSA)	ICRP 80				
EANM administered activity (MBq)	33	48	64	87	100
EANM effective dose (mSv)	1.22 [†]	1.00 [†]	0.96	0.96	0.88
NA administered activity (1.85 MBq/kg)	18	35	59	102	130
NA effective dose (mSv)	0.67	0.73	0.89	1.12	1.14 [†]
NA critical organ dose (mGy) – Kidney	0.76	0.43	0.30	0.22	0.18

EANM vs North American Consensus Guidelines Continued


Age:	1 year	5 years	10 years	15 years	Adult
Nominal weight (kg):	9.8	19	32	55	70
Radionuclide cystography					
[^{99m} Tc] sodium pertechnetate	MIRD				
EANM administered activity (MBq)	20*	20*	20*	20*	-
EANM effective dose (mSv)	0.03	0.02	0.01	0.01	-
NA administered activity (MBq)	37*	37*	37*	37*	-
NA effective dose (mSv)	0.06 [†]	0.03 [†]	0.02	0.02 [†]	-
NA critical organ dose (mGy) – Bladder	0.90	0.50	0.33	0.23	
Meckel scan					
[^{99m} Tc] sodium pertechnetate	ICRP 80				
EANM administered activity (MBq)	20*	26	41	65	80
EANM effective dose (mSv)	1.60 [†]	1.09 [†]	1.06	1.11	1.04
NA administered activity (1.85 MBq/kg)	11	21	36	61	78
NA effective dose (mSv)	0.86	0.89	0.92	1.04	1.01
NA critical organ dose (mGy) – Colon	2.9	3.0	3.1	3.2	3.3


39

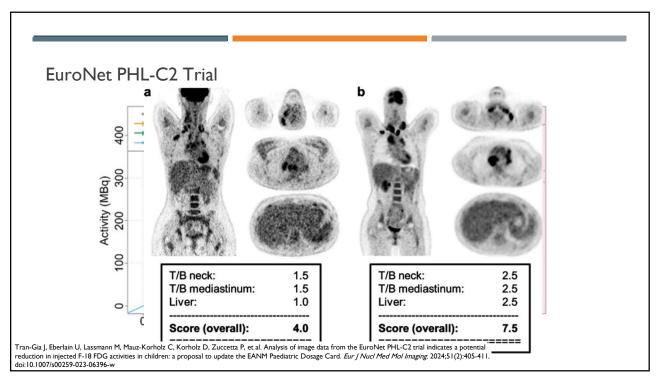
Age:	1 year	5 years	10 years	15 years	Adult
Nominal weight (kg):	9.8	19	32	55	70
Gastric emptying/reflux (solid)					
^{99m} Tc-labeled sulfur colloid	ICRP 80				
EANM administered activity (MBq)	10*	13	20	33	40
EANM effective dose (mSv)	1.40	0.99 [†]	0.98	1.01 [†]	0.96
NA administered activity (MBq)	9.25*	9.25*	18.5*	18.5*	18.5*
NA effective dose (mSv)	1.30	0.70	0.89	0.57	0.44
NA critical organ dose (mGy) – Colon	6.1	3.2	4.1	2.4	1.9
Whole-body meta-iodobenzylguanidine (MIBG) scan					
¹²³ I-MIBG	ICRP 80				
EANM administered activity (MBq)	80*	130	204	326	400
EANM effective dose (mSv)	5.4 [†]	4.8 [†]	5.3 [†]	5.5	5.2
NA administered activity (5.2 MBq/kg)	51	99	166	286	364
NA effective dose (mSv)	3.5	3.7	4.3	4.9	4.7
NA critical organ dose (mGy) – Liver	17	18	22	25	24

- Highest exposure will come from 18F or 1231
- Lowest exposure with 99mTc
- Bladder was identified as the critical organ for 5 out of 12 procedures
- EANM dosage card resulted in over 20% greater effective dose vs NA guidelines in 39% of cases
- NA guidelines resulted in over 20% greater effective vose vs EANM in 25% of cases
- Differences in effective dose were greater in the I year old and 5 year old age groups
- Need for adjustments to guidelines to reduce differences in exposure

						_		_
	Weight	Class	Class	Class	Weight	Class	Class	Class
EANM Dosage Card	kg	А	В	С	kg	А	В	С
	3	1	1	1	32	3.77	7.29	14.00
	4	1.12	1.14	1.33	34	3.88	7.72	15.00
	6	1.47	1.71	2.00	36	4.00	8.00	16.00
	8	1.71	2.14	3.00	38	4.18	8.43	17.00
	10	1.94	2.71	3.67	40	4.29	8.86	18.00
	12	2.18	3.14	4.67	42	4.41	9.14	19.00
	14	2.35	3.57	5.67	44	4.53	9.57	20.00
	16	2.53	4.00	6.33	46	4.65	10.00	21.00
	18	2.71	4.43	7.33	48	4.77	10.29	22.00
	20	2.88	4.86	8.33	50	4.88	10.71	23.00
	22	3.06	5.29	9.33	52-54	5.00	11.29	24.67
	24	3.18	5.71	10.00	56-58	5.24	12.00	26.67
	26	3.35	6.14	11.00	60-62	5.47	12.71	28.67
	28	3.47	6.43	12.00	64-66	5.65	13.43	31.00
	30	3.65	6.86	13.00	68	5.77	14.00	32.33

EANM Dosage Card	Radiopharmaceutical	Class	Baseline Activity (for calculation purposes only) MBq	Minimum Recommended Activity ¹ MBq
	¹²³ I (Thyroid)	С	0.6	3
	¹²³ I Amphetamine (Brain)	В	13.0	18
	¹²³ I HIPPURAN (Abnormal renal function)	В	5.3	10
	¹²³ I HIPPURAN (Normal renal function)	А	12.8	10
	¹²³ I mIBG	В	28.0	37
	¹³¹ I mIBG	В	5.6	35
	¹⁸ F FDG-PET torso	В	25.9	26
	¹⁸ F FDG-PET brain	В	14.0	14
	¹⁸ F Sodium fluoride	В	10.5	14
	⁶⁷ Ga Citrate	В	5.6	10
	⁶⁸ Ga-labelled peptides	В	12.8	14
	99mTc ALBUMIN (Cardiac)	В	56.0	80
	99mTc COLLOID (Gastric Reflux)	В	2.8	10
	99mTc COLLOID (Liver/Spleen)	В	5.6	15
	99mTc COLLOID (Marrow)	В	21.0	20

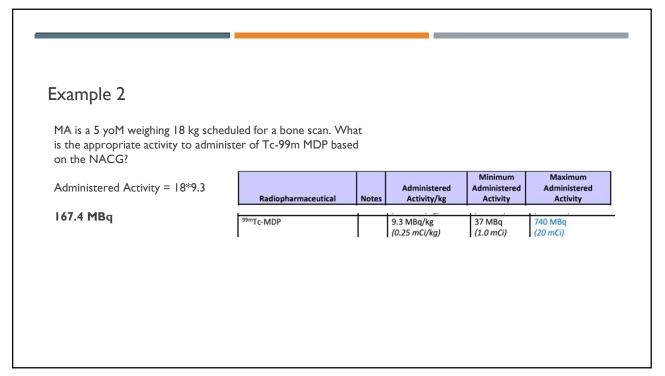
99mTc DMSA	В	6.8	18.5	E 4	к і к и г	~	~ I
^{99m} Tc DTPA (Abnormal renal function)	В	14.0	20	EA		Dosage (Lard
99mTc DTPA (Normal renal function)	A	34.0	20				
99mTc ECD	В	51.8	100				
^{99m} Tc HMPAO (Brain)	В	51.8	100				
99mTc HMPAO (WBC)	В	35.0	40				
99mTc IDA (Biliary)	В	10.5	20				
99mTc MAA / Microspheres	В	5.6	10	99mTc SestaMIBI/Tetrofosmin ²			
99mTc MAG3	A	11.9	15	(Cardiac stress scan 2-day protocol min)	В	42.0	80
99mTc MDP	В	35.0	40	99mTc SestaMIBI/Tetrofosmin ²	в	63.0	80
^{99m} Tc Pertechnetate (Cystography)	В	1.4	20	(Cardiac stress scan 2-day protocol max)	U	05.0	00
99mTc Pertechnetate (Ectopic Gastric Mucosa)	В	10.5	20	99mTc SestaMIBI/Tetrofosmin ² (Cardiac rest scan 1-day protocol)	В	28.0	80
^{99m} Tc Pertechnetate (Cardiac First Pass)	В	35.0	80	99mTc SestaMIBI/Tetrofosmin ²			
^{99m} Tc Pertechnetate (Thyroid)	В	5.6	10	(Cardiac stress scan 1-day protocol)	В	84.0	80
^{99m} Tc RBC (Blood Pool)	В	56.0	80	99mTc Spleen (Denatured RBC)	В	2.8	20
^{99m} Tc SestaMIBI/Tetrofosmin (Cancer seeking agent)	в	63.0	80	99 Tc TECHNEGAS (Lung ventilation) ³	В	49.0	100
^{99m} Tc SestaMIBI/Tetrofosmin ² (Cardiac rest scan 2-day protocol min)	В	42.0	80				
^{99m} Tc SestaMIBI/Tetrofosmin ² (Cardiac rest scan 2-day protocol max)	в	63.0	80				

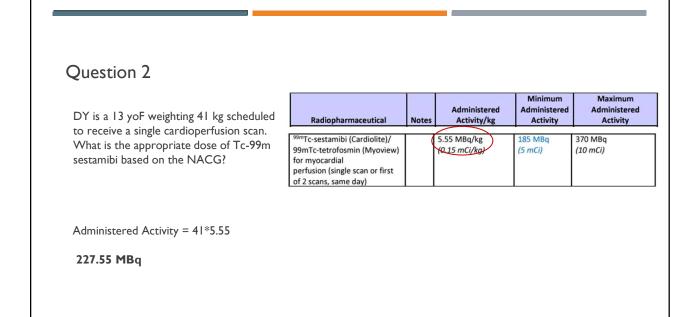

xample I					
JP is a 10 yoM weight 58 lb who i	s schedule to receive a renal	Weight	Class	Class	Class
cortical scan. What is the approp	riate dose of Tc-99m DMSA JP	kg	А	В	С
should receive using the EANM o	losage card?	20	2.88	4.86	8.33
58 lb = 26.3 kg		22	3.06	5.29	9.33
Multiple = 6.14		24	3.18	5.71	10.00
		26	3.35	6.14	11.00
Administered Activity = 6.14*6.8	= 41.75 MBq				
	Radiopharmaceutical	Class	Baseline Acti	ivity Mir	imum
	hadopharmaceutear	cluss	(for calculat purposes or	ion Recon	nmended

Question I		Weight Class Class Cla
KT is a 16 yoF with Hodgkins lymphoma is 50 kg. She is scheduled for an abdomin the appropriate dose of F-18 FDG based dosage card?	nal PET scan. What is	kg A B C 50 4.88 10.71 23
Multiple = 10.71	Radiopharmaceutical	Class Baseline Activity Minimu (for calculation Recommer
Multiple = 10.71 Administered Activity = 10.71*25.9	Radiopharmaceutical	

EuroNet PHL-C2 Trial²⁴

- Analyzed 2082 F-18 FDG PET scans
- Compared administered activity to recommended administered activity based on EANM dosage card
- Detailed quality assessment on 91 scans
- 94.1% of scans were completed with a lower administered activity than recommended (median 99.4 MBq less)
- 5.7% scans exceeded recommended EANM dose (median 15.1 MBq more)
- Assessment of visual image quality found lower activity were suitable for reporting
- Potential to have a mean activity reduction of 39% for updated card

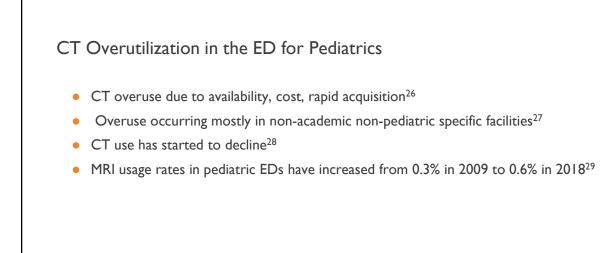


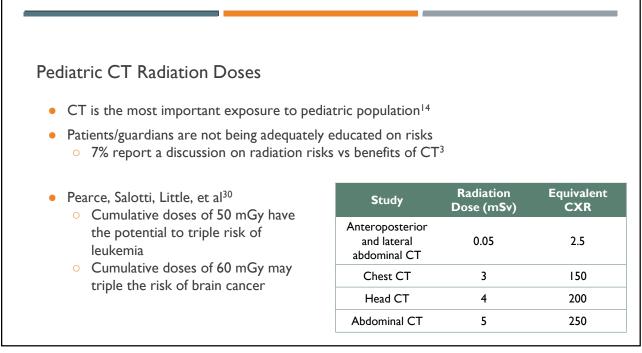

North American	Radiopharmaceutical	Notes	Administered Activity/kg	Minimum Administered Activity	Maximum Administered Activity
Consensus Guidelines ²⁵	¹²³ I-MIBG		5.2 MBq/kg (0.14 mCi/kg)	37 MBq (1.0 mCi)	370 MBq (10.0 mCi)
Consensus Guidennes ²³	^{99m} Tc-MDP		9.3 MBq/kg (0.25 mCi/kg)	37 MBq (1.0 mCi)	740 MBq (20 mCi)
	¹⁸ F-FDG	A	Body, 2.96-5.2 MBq/kg (0.08-0.14 mCi/kg)	26 MBq (0.7 mCi)	370 MBq (10 mCi)
			Brain, 1.85-3.7 MBq/kg (0.05 -0.10 mCi/kg)	14 MBq (0.37 mCi)	<u>148 MBq</u> (<u>4 mCi)</u>
	¹⁸ F-FDOPA		2.96-5.92 MBq/kg (0.08-0.16 mCi/kg)	29.6 MBq (0.8 mCi)	222 MBq (6 mCi)
	^{99m} Tc-DMSA		1.85 MBq/kg (0.05 mCi/kg)	18.5 MBq (0.5 mCi)	100 MBq (2.7 mCi)
	99mTc-MAG3	В	Without flow study, 3.7 MBq/kg (0.10 mCi/kg)	37 MBq (1.0 mCi)	148 MBq (4.0 mCi)
			With flow study, 5.55 MBq/kg (0.15 mCi/kg)	37 MBq (1.0 mCi)	148 MBq (4.0 mCi)
	99mTc-IDA		1.85 MBq/kg (0.05 mCi/kg)	18.5 MBq (0.5 mCi)	
	^{99m} Tc-MAA		With ventilation using ^{99m} Tc agent, 2.59 MBq/kg (0.07 mCi/kg)		
			Without ventilation using ^{99m} Tc agent, 1.11 MBq/kg) (0.03 mCi/ka)	14.8 MBq (0.4 mCi)	

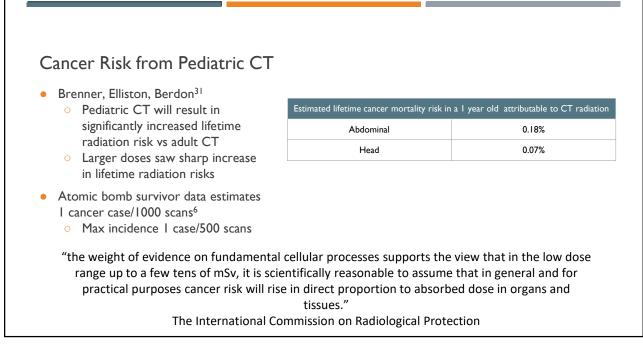
				Minimum	Maximum
North American	Radiopharmaceutical	Notes	Administered Activity/kg	Administered Activity	Administered Activity
Consensus Guidelines ²⁵	0000			1	
Consensus Guidennes	^{99m} Tc-pertechnetate (Meckel		1.85 MBq/kg	9.25 MBq	296 MBq
	diverticulum imaging) ¹⁸ F-sodium fluoride		(0.05 mCi/kg) 1.85 MBg/kg	(0.25 mCi) 18.5 MBg	(8 mCi) 148 MBg
	F-sodium fluoride		(0.05 mCi/kg)	(0.5 mCi)	(4 mCi)
	99mTc (for cystography)	С	No weight-based dose		No more than 37 MBq (1.0 mCi) for each bladder filling
	^{99m} Tc-sulfur colloid (for oral liquid gastric emptying)	D	No weight-based dose	18.5 MBq (0.5 mCi)	37 MBq (1.0 mCi)
	^{99m} Tc-sulfur colloid (for solid gastric emptying)	D	No weight-based dose	9.25 MBq (0.25 mCi)	18.5 MBq (0.5 mCi)
	^{99m} Tc- HMPAO (Ceretec)/ ^{99m} Tc-ECD (Neurolite) for brain perfusion		11.1 MBq/kg (0.3 mCi/kg)	185 MBq (5 mCi)	740 MBq (20 mCi)
	^{99m} Tc-sestamibi (Cardiolite)/ 99mTc-tetrofosmin (Myoview) for myocardial perfusion (single scan or first of 2 scans, same day)		5.55 MBq/kg (0.15 mCi/kg)	185 MBq <i>(5 mCi)</i>	370 MBq (10 mCi)
	^{99m} Tc-sestamibi (Cardiolite)/		16.7 MBq/kg	185 MBq	1110 MBq
	99mTc-tetrofosmin (Myoview)		(0.45 mCi/kg)	(5 mCi)	(30 mCi)

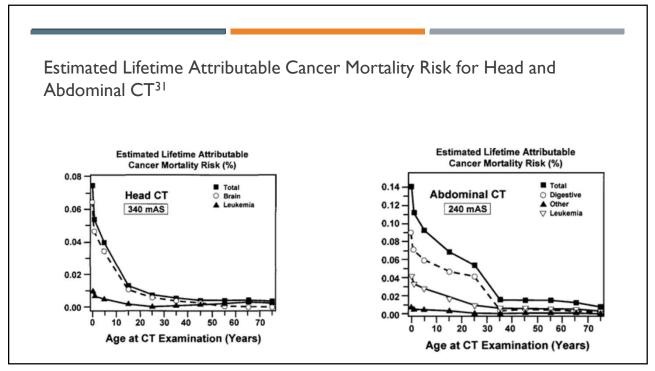
North American Consensus Guidelines²⁵

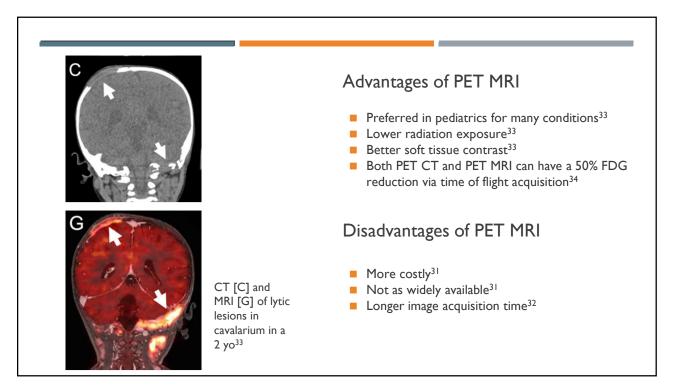
Radiopharmaceutical	Notes	Administered Activity/kg	Minimum Administered Activity	Maximum Administered Activity
¹³ NH ₃ for cardiac imaging		10.4 MBq/kg (0.28 mCi/kg)	74 MBq (2 mCi)	
⁸² Rb for cardiac imaging		7.4 MBq/kg (0.2 mCi/kg)	370 MBq (10 mCi)	
Na ¹²³ I for thyroid imaging		0.28 MBq/kg (0.0075 mCi)	1 MBq (0.027 mCi)	11 MBq (0.3 mCi)
Na ¹²³ I for thyroid cancer imaging		3.7 MBq/kg (0.10 mCi/kg)	74 MBq (2 mCi)	148 MBq (4 mCi)
^{99m} Tc-pertechnetate for thyroid imaging		1.1 MBq/kg (0.03 mCi/kg)	7 MBq (0.19 mCi)	93 MBq (2.5 mCi)
^{99m} Tc-RBC for blood pool imaging		11.8 MBq/kg (0.32 mCi/kg)	74 MBq (2 mCi)	740 MBq (20 mCi)
^{99m} Tc-WBC for infection imaging		7.4 MBq/kg (0.2 mCi/kg)	74 MBq (2 mCi)	555 MBq (15 mCi)
68Ga-DOTATATE		2.0 MBq/kg (0.054 mCi/kg)	14 MBq (0.38 mCi)	200 MBq (5.4 mCi)
⁶⁸ Ga-DOTATOC		1.59 MBq/kg (0.043 mCi/kg)	11.1 MBq (0.30 mCi)	111 MBq (3 mCi)

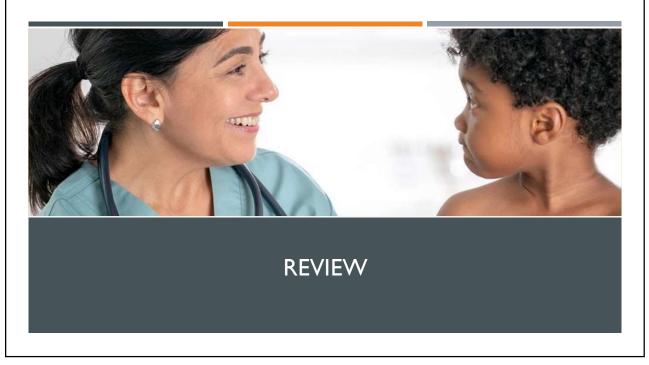


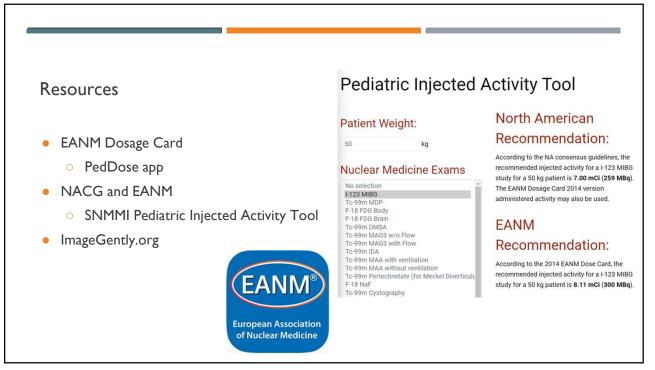

Guideline		Weight					
	22 kg	26 kg	30 kg				
EANM	185 MBq (5 mCi)	215 MBq (5.8 mCi)	240 MBq (6.5 mCi				
NACG	205 MBq (5.5 mCi)	242 MBq (6.5 mCi)	279 MBq (7.5 mCi				











Review Questions

What is the estimated radiation dose from an Tc99m bone scan for a 5 year old patient?

NM is a 3 yoF weighing 14 kg who is scheduled to receive a staging scan for recently diagnosed neuroblastoma. What is the appropriate dose of I-123 MIBG based on EANM and NACG guidelines? Which guideline offers a lower dose?

What are two results/pieces of information obtained from the Swedish study?

What are two advantages of PET MRI vs PET CT?

67

Key Takeaways Additional considerations are required for pediatric NM studies sedation, immobilization, distraction Children are more radiosensitive Use minimum administered activities when possible Perform only necessary studies, avoid multiphase exam, adjust machine settings Gold standard data retrieved from atomic bomb survivor studies Lowest dose for which there is significant excess cancer incidence = 30-40 mSv (3-4 rads) Radiation dose from FDG PET scan is 15.3 mSv PET MRI offers lower radiation exposure and should be considered when appropriate

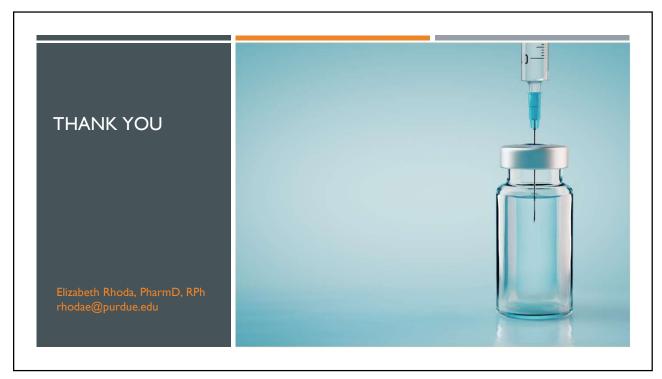
References

- I. Hall EJ. Radiation biology for pediatric radiologists. Pediatr Radiol. 2009;39:S57-S64. doi: 10.1007/s00247-008-1027-2.
- 2. Treves ST, Davis RT, Fahey FH (2008) Administered radiopharmaceutical doses in children: a survey of 13 pediatric hospitals in North America. J Nucl Med. 49:1024–1027. doi: 10.2967/jnumed.107.049908
- 3. Lee Cl, Haims AH, Monico EP, Brink JA, Forman HP. Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. *Radiology*. 2004;231:393–398. doi: 10.1148/radiol.2312030767
- 4. Jacob K, Vivian G, Steel JR. X-ray dose training: are we exposed to enough. Clin Radiol. 2004;59:928–934. doi: 10.1016/j.crad.2004.04.020
- Biological Effects of Ionizing Radiation (BEIR) Committee of the National Academy of Sciences National Research Council, Committee to Assess Health Risks From Exposure to Low Levels of Ionizing Radiation. *Health Risks From Exposure to Low Levels of Ionizing Radiation: BEIR Phase 2 (2006)*. Washington, DC: National Academies Press; 2006. Available at: http://books.nap.edu/catalog/11340.html. Accessed November 28, 2006
- Djekidel M, Govindarajan KK. Nuclear medicine pediatric assessment, protocols, and interpretation. StatPearls. National Library of Medicine National Center for Biotechnology Information. Updated February 5, 2024. Accessed September 2, 2024. https://www.ncbi.nlm.nih.gov/books/NBK572132/
- 7. Jancelewicz T, Barmherzig R, Chung CT, Ling SC, Kamath BM, Ng VL, Amaral J, O'Connor C, Fecteau A, Langer JC. A screening algorithm for the efficient exclusion of biliary atresia in infants with cholestatic jaundice. J Pediatr Surg. 2015;50(3):363-70. doi: 10.1016/j.pedsurg.2014.08.014
- 8. Kwatra N, Shalaby-Rana E, Narayanan S, Mohan P, Ghelani S, Majd M. Phenobarbital-enhanced hepatobiliary scintigraphy in the diagnosis of biliary atresia: two decades of experience at a tertiary center. Pediatr Radiol. 2013;43(10): doi: 10.1007/s00247-013-2704-3
- Treglia G. Diagnostic performance of ¹⁸F-FDG PET/CT in infectious and inflammatory diseases according to published meta-analyses. Contrast Media Mol Imaging. 2019;2019;3018349. doi: 10.1155/2019/3018349

69

References Continued

- 10. Brody AS, Frush DP, Huda W, Brent RL. Radiation risk to children from computed tomography. *Pediatrics*. 2007;120(3):677-682. https://doi.org/10.1542/peds.2007-1910
- 11. Great Ormond Street Hospital for Children Radiology Department and the Child and Family Information Group.. Your child is having a CT scan with sedation. National Health Service. Updated March 2019. Accessed September 2, 2024. https://www.gosh.nhs.uk/conditions-and-treatments/procedures-and-treatments/your-child-having-ct-scan-sedation/
- 12. Society of Nuclear Medicine Procedure Guideline for Pediatric Sedation in Nuclear Medicine. 3rd ed. Society of Nuclear Medicine. 2003.
- 13. Heiman E, Hessing E, Berliner E, Cytter-Kuint R, Barak-Corren Y, Weiser G. "Feed and swaddle" method of infants undergoing head CT for minor head injury in the pediatric emergency department a comparative case review. Eur J Radiol. 2022;154:110339. doi: 10.1016/j.ejrad.2022.110399
- 14. Radiation Risks and Pediatric Computed Tomography (CT): A Guide for Health Care Providers. National Cancer Institute. Updated September 4, 2018. Accessed September 6, 2024. https://www.cancer.gov/about-cancer/causes-prevention/risk/radiation/pediatric-ct-scans
- 15. Image Gently. The Image Gently Alliance. Accessed September 6, 2024. https://www.ncbi.nlm.nih.gov/books/NBK572132/
- Hall P, Adami HO, Trichopoulos D, et al. Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ. 2004;328:19. doi: https://doi.org/10.1136/bmj.328.7430.19
- Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103-115. doi: 10.3857/roj.2014.32.3.103
- Brenner DJ, Doll R, Goodhead DT, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA. 2003;100(24):13761-13766. doi: 10.1073/pnas.2235592100
- Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res. 2000;145(2):178-186. doi: 10.1667/0033-7587(2000)154[0178:rrcral]2.0.co;2.


References Continued

- 20. Grant FD, Gelfand MJ, Drubach LA, Treves ST, Fahey FH. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine. *Pediatr Radiol.* 2015;45(5):706-713. doi: 10.1007/s00247-014-3211-x
- 21. ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
- Lassman M, Treves ST, EANM/SNMMI Paediatric Dosage Harmonization Working Group. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036-1041. doi: 10.1007/s00259-014-2731-9
- 23. Dosage Card. European Association of Nuclear Medicine. Updated August 2016. Accessed September 10, 2024. https://eanm.org/publications/useful-resources/dosage-card/
- Tran-Gia J, Eberlain U, Lassmann M, et al. Analysis of image data from the EuroNet PHL-C2 trial indicates a potential reduction in injected F-18 FDG activities in children: a proposal to update the EANM Paediatric Dosage Card. Eur / Nucl Med Mol Imaging. 2024;51(2):405-411. doi:10.1007/s00259-023-06396-w
- 2024 Update of the North American Consensus Guidelines for Pediatric Administered Radiopharmaceutical Activities. Society of Nuclear Medicine and Molecular Imaging. Accessed September 10, 2024. https://snnmi.org/Web/Clinical-Practice/Procedure-Standards/Standards/2024-Update-of-the-North-American-Consensus-Guidelines-for-Pediatric-Administered-Radiopharmaceutical Mobile.aspx
- 26. Mettler FA Jr, Mahesh M, Bhargavan-Chatfield M, et al. Patient exposure from radiologic and nuclear medicine procedures in the United States. Radiology. 2020;295(2):418-427. doi: 10.1148/radiol.2020192256
- 27. Marin JR, Wang L, Winger DG, Mannix RC. Variation in computed tomography imaging for pediatric injury- related emergency visits. J Pediatr 2015; 167: 897–904. doi: 10.1016/j.jpeds.2015.06.052
- 28. Ohana O, Soffer S, Zimlichman E, Klang E. Overuse of CT and MRI in paediatric emergency departments. Br / Radiol. 2018;91(1085):20170434. doi: 10.1259/bjr.20170434
- 29. Marin JR, Rodean J, Hall M, et al. Trends in use of advanced imaging in pediatric emergency departments, 2009-2018. JAMA Pediatr: 2020;174(9):e202209. doi: 10.1001/jamapediatrics.2020.2209

71

References Continued

- Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukemia and brain tumors: a retrospective cohort study. Lancet. 2012;380(9840):499-505. doi: 10.1016/S0140-6736(12)60815-0
- 31. Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ. PET/MRI: where might it replace PET/CT. J Magn Reson Imaging. 2017;46(5):1247-1262. doi: 10.1002/jmri.25711
- Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289-296. doi: 10.2214/ajr.176.2.1760289
- Guja KE, Behr G, Bedmutha A, Kuhn M, Nadel HR, Pandit-Taskar N. Molecular imaging with PET-CT and PET-MRI in pediatric musculoskeletal diseases. Semin Nucl Med. 2024;54(3):438-455. doi: 10.1053/j.semnuclmed.2024.03.003
- Schmall JP, Surti S, Otero HJ, et al: Investigating Low-Dose Image Quality in Whole-Body Pediatric (18)F-FDG Scans Using Time-of Flight PET/MRI. / Nucl Med. 62(1):123-130, 2021

